Molecular diagnosis using NGS germline panels facilitates diagnosis and improves therapy of rare inherited hematological disorders

Hannah Tamary MD
Professor of Pediatrics
Hematology Oncology
Schneider Children’s Medical Center of Israel
The molecular hematology laboratory

- Perform genetic diagnosis of:
 - Thalassemia, hemoglobinopathies
 - Rare anemias, erythrocytosis, rare iron metabolism disorders
 - Hemophagocytic lymphohistiocytosis (HLH)
 - Autoimmune lymphoproliferative syndrome (ALPS)
 - Inherited bone marrow failure syndromes (IBMFS)
 - Inherited predisposition to myelodysplastic syndromes (MDS)
Agenda

- Clinical presentation of inherited predisposition to MDS/AML
- The advantage of molecular diagnosis
- The technique NGS panels, challenges of interpretation of sequence variants
 - Case reports- accurate diagnosis leads to optimal therapy
- Overall results in our laboratory-3.5 years experience
MDS

- WHO definition: clonal hematopoietic disorder characterized by
 - Ineffective hematopoiesis
 - Cytopenias, single- or multilineage dysplasia
 - Increased propensity to evolve to AML

- Primary MDS typically presents in older adults, with median age at disease onset of 72-75 y in the context of somatic mutations acquired with age

- MDS presenting in children and younger adults (<40y) is more frequently associated with germline genetic predisposition
Inherited predisposition to MDS/AML

- Physical stigmata and family history if present may provide important clues to diagnose

- Cytopenias and BMF alone are common presentations and thus diagnosis may be difficult

- Each individual genetic disorder is rare, as a group they account for at least 4%-15% of patients with MDS

Keel et al Haematologica 101:1343-50, 2016
Inherited predisposition to MDS/AML

- Primary inherited predisposition to MDS/AML
- Secondary associated with 'classical' inherited bone marrow failure syndromes (IBMFS)
Primary inherited predisposition to MDS/AML
MDS predisposition genes

- GATA2
- SAMD9/SAMD9L
- RUNX1
- ETV6
- ANKRD26
- DDX41

- TP53
- CEBPA
- SRP72
- ERCC6L2
- MYSM1
- Etc..
Spectrum of manifestation of germ line mutations in GATA-2

MonoMAC
- Monocytopenia, non-TB mycobacteria infections

Emberger syndrome
- MDS, lymphedema, warts

DCML
- Dendritic cell, monocyte, and B and natural killer lymphoid deficiency vulnerability to viral infections

Congenital neutropenia
- Recurrent infections, warts, progression to MDS/AML

BM Failure

GATA2-transcription factor critical for hematopoiesis & lymphatic development
Monosomy 7 as the most common cytogenetic aberration in GATA2 MDS

- MDS germline GATA2 mutations were found in 37% of patients with monosomy 7
- Stratified by age, 72% of adolescents with monosomy 7 were carriers of GATA2 mutation
- In children 7% of MDS due to GATA2 mutation
- Progression to MDS/AML, usually associated with monosomy 7 in 30-50% of patients

SAMD9/SAMD9L germline MDS syndrome

• Heterozygote gain of function mutations in \textit{SAMD9} and its paralogue \textit{SAMD9L} result in cytopenias and high risk of developing MDS with monosomy 7

• First diagnosed (2016) were two distinct clinical presentation
 – \textit{MIRAGE}-Myelodyplasia, Infection, Restriction of growth, Adreanal insufficiency, Genital phenotype and Enteropathy (SAMD9L mutations)
 – \textit{Atxia}-pancytopenia syndrome-Cerbellar atxia, cyopenias, predisposition to marrow failure and AML (SAMD9)

• In children 17% of MDS due to mutations in SAMD9/9L
Adaptation mechanisms to escape from germline SAMD9/9L mutations

Pancytopenia

MDS

Revenant clone

Transient monosomy 7

Clonal evolution

Self correction (UPD7q)

De7q

Monosomy 7

Mut

WT

Δmut

mut

WT

WT

WT

Types of SAMD9/9L mutations:
mut: missense germline (gain-of-function)
Δmut: acquired protein truncating (loss-of-function)
MDS predisposition genes

- GATA2
- SAMD9/SAMD9L
 - RUNX1
 - ETV6
 - ANKRD26
- DDX41
- TP53
- CEBPA
- SRP72
- ERCC6L2
- MYSM1
- Etc..

Familial MDS associated with thrombocytopenia
Familial MDS associated with thrombocytopenia

- Autosomal dominant mutations in \textit{RUNX1}, \textit{ETV6}, \textit{ANKRD26}

- Mild to moderate thrombocytopenia

- Normal-sized platelets (normal MPV)
- In some patient additional functional platelet defects leading to excessive bleeding

- BM may be hypocellular with dysmegakaryopoiesis

- An increased risk of developing MDS, AML, or lymphoid malignancies
Inherited predisposition to MDS and thrombocytopenia

<table>
<thead>
<tr>
<th>Disease</th>
<th>Gene</th>
<th>% of inherited thrombocytopenia</th>
<th>% developing MDS/AML</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congenital thrombocytopenia</td>
<td>ANKRD26</td>
<td>18</td>
<td>8</td>
</tr>
<tr>
<td>ETV-related thrombocytopenia</td>
<td>ETV6</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>FPD/AML</td>
<td>Runx1</td>
<td>3</td>
<td>40</td>
</tr>
</tbody>
</table>

Noris and Pecci Hematology :385-399, 2017
Inherited predisposition to MDS/AML

- Primary inherited predisposition to MDS/AML

- Secondary predisposition to MDS/AML 'classical' inherited bone marrow failure syndromes (IBMFS)
Relative frequencies of the classical IBMFS among 270 Israeli patients
Fanconi anemia (FA)

- Mainly autosomal recessive genetic disorder

- Characterized by
 - Congenital anomalies
 - Bone marrow failure (BMF)
 - Cancer predisposition-myelodysplastic syndrome (MDS) progressing to acute myeloblastic leukemia (AML), solid tumors

- Caused by inability to repair DNA interstrand cross-links (ICLs)
Typical FA anomalies
Fanconi anemia

- A significant subset (25%-30%) of patients lack these physical findings

- Hematologic abnormalities are variable and include cytopenias, red cell macrocytosis, hypocellular marrow with dysplasia

- First manifestation can be MDS or AML

- The cumulative incidence for MDS-40% by age 50, AML 20% by age 40
Repair pathway in normal and FA cells

ICL - interstrands cross links
NHEJ - Non-homologous end joining

Bessler et al 2015
Chromosomal Fragility Test-DEB
Dyskeratosis Congenita (DC)

Proteins involved in telomere maintenance

DC phenotypic triad
Dyskeratosis congenita

- Patients often present without overt syndromic features
- Hematologic complications including BMF, MDS, and AML
- Each may be the sole and first manifestation of the disorder
- The cumulative incidence of MDS in DC has been estimated to be 2% by age 50 years
Flow-FISH lymphocyte telomere length

Gold standard to diagnosis of DC ‘equivalent’ to chromosome breakage of FA

Short telomeres <1st percentile
Additional IBMFS with predisposition to MDS/AML

<table>
<thead>
<tr>
<th>IBMFS</th>
<th>MDS/AML</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shwachman Diamond syndrome (SDS)</td>
<td>Cumulative incidence MDS/AML-18.8% by age of 20</td>
</tr>
<tr>
<td></td>
<td>36% by age of 30</td>
</tr>
<tr>
<td>Diamond Blackfan anemia (DBA)</td>
<td>Cumulative incidence AML-2% by age 45</td>
</tr>
<tr>
<td>Severe congenital neutropenia (SCN)</td>
<td>Overall hazard of MDS/AML is 2.3%/year after 10 years receiving G-CSF</td>
</tr>
</tbody>
</table>
Germ line mutations in patients referred due to persistent cytopenias

173 families, 36.9% >18 years of age at presentation
'Classical' IBMFS- known genes involved

<table>
<thead>
<tr>
<th>Disorder</th>
<th>No of genes mutated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fanconi anemia (FA)</td>
<td>23</td>
</tr>
<tr>
<td>Dyskeratosis congenita (DC)</td>
<td>13</td>
</tr>
<tr>
<td>Diamond Blackfan-Anemia (DBA)</td>
<td>21</td>
</tr>
<tr>
<td>Severe congenital neutropenia (SCN)</td>
<td>23</td>
</tr>
<tr>
<td>Shwachman-Diamond Syndrome (SDS)</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>83</td>
</tr>
</tbody>
</table>
Molecular diagnosis for inherited predisposition to MDS/AML

• Optimal therapy
 • Allows surveillance to detect early signs of disease progression
 • Stem cell transplantation (SCT) before progression to leukemia
 • Proper conditioning—reduced in FA and DC
 • Avoid choosing a sibling donor carrying the same germline mutations as the proband
• Family counseling
Sanger sequencing

A gene-by-gene sequencing (Sanger sequencing)

• Advantages
 – Accurate
 – Relatively cheap

• Disadvantages
 – No definitive diagnosis reached
 – Labor intensive Fanconi anemia FANCA 46 exons
Whole exome sequencing

~20,000 genes
Targeted genomic capture & next generation sequencing
Advantages of panel targeted NGS

• Avoid gene-by-gene sequencing (hundred genes in a panel)
• High depth of coverage across all genes of interest
• Interpretation is easier relative to WES
• New genes of interest can be incorporated as they are reported
• Cost effective~ 800USD
Workflow for next-generation sequencing (NGS)

MDS-Skin fibroblasts
Bioinformatics interpretation of sequence variants

- **Population database** - frequencies of variants in large populations. Polymorphism variant with frequency >1%

- **Assessment of the variants** compared to Disease Data Bases - variants found in patients with disease

- **Computational (In Silico) Predictive Programs** - predict whether variants are likely to be deleterious on the basis of evolutionary conservation or predicted structural effects
Stratification of sequence variants

- Pathogenic
- Likely pathogenic
- Variant of unknown significant (VOUS)
- Likely benign
- Benign

Standards and Guidelines for the Interpretation of Sequence Variants American College of Medical Genetics Genet Med. 17(5): 405-424, 2015
The grey-zone: variant of uncertain significances

A variant of unknown significant (VOUS) with today's knowledge may become a significant mutation in the future.
Evaluation of mutation pathogenicity

- Prediction programs may be helpful but must be interpreted with caution

- Strong evidence for pathogenicity
 - Known mutation associated with clinical disorder with supportive *in vitro* studies

- Demonstration that the variant tracks with the clinical disorder in multiple families, or in several affected individuals within the family

- Functional test (chromosomal breakage, telomere length) support the genetic studies
Final report

• Bioinformatics evaluation is done independently by 3 experienced laboratory technicians

• Combined laboratory and clinicians meeting

• The presence of each clinical significant variant is verified by Sanger sequencing

• Referral for genetic counseling
Examples how NGS panels usage improve diagnosis and clinical managements-
predisposition to MDS/AML
Case report 1

- 18 year-old young man
- Known to our service since he was 7 months old, presented with thrombocytopenia 50-70X10^9/L
- No bleeding tendency
- BM-numerous megakaryocytes
- Serological work up was negative: EBV, CMV, HIV, serum immunoglobulins, Coombs, ANA, serum complement, LAC
Case report 1

• Considered to have ITP

• At age of 12 macrocytosis MCV 97.5, HbF-1%

• BM biopsy hypoplastic marrow (20-40% cellularity)

• Chromosomal breakage (DEB), telomere length-WNL

• Germline panel mutation in ETV6 c.1103T>G
Case report 1- treatment

- Thrombocytopenia with genetic predisposition to MDS

- Prospective clinical surveillance: CBC every 3-6 months, marrow surveillance once a year including morphology, cytogenetics, MDS FISH panel and somatic NGS panel

- SCT prior to AML
11 year old boy
Presented with pancytopenia
O/E WNL

WBC-2.78X10⁹/L, ANC-0.2X10⁹/L
Hb-8.8gr%, reticulocytes-0.9%
PLT-24X10⁹/L
BM biopsy hypoplastic, 20% cellularity

Started on ATG, Cyclosporine A and elthrombopeg
Case report 2

- 11 year old boy
 Presented with pancytopenia
 O/E WNL

- WBC-2.78X10⁹/L, ANC-0.2X10⁹/L
 Hb-8.8gr%, reticulocytes-0.9%,
 PLT-24X10⁹/L
 BM biopsy hypoplastic,
 20% cellularity

- Started on ATG, Cyclosporine A
 and elthrombopag
Case 2-Therapy

• SCT unrelated matched donor

• Father CBC and BM at diagnosis, education about signs and symptoms of leukemia, CBC every 6 months

• Surveillance for children: CBC every 6 months, marrow surveillance once a year

• SCT before AML develops
Overall results of IBMF/MDS panel analysis 2016-6.2019

Schneider Children’s Medical Center of Israel
Molecular diagnosis of patients referred with cytopenias (2016-6.2019) (N=134)

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>No of patients</th>
<th>% of all pts referred</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inherited predisposition to MDS by NGS panel</td>
<td>37</td>
<td>27.6</td>
</tr>
<tr>
<td>IBMFs diagnosed by Sanger sequencing</td>
<td>12</td>
<td>8.9</td>
</tr>
<tr>
<td>Congenital thrombocytopenia by NGS</td>
<td>9</td>
<td>6.7</td>
</tr>
<tr>
<td>Total</td>
<td>58</td>
<td>43.3</td>
</tr>
</tbody>
</table>
Primary predisposition to MDS diagnosed by BMF/MDS NGS panel (N=18)

<table>
<thead>
<tr>
<th>Disease</th>
<th>No of Patients</th>
<th>Gene mutated (No of pts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inherited predisposition to MDS</td>
<td>10</td>
<td>SAMD9L (5), ERCC6L2 (3), GATA2 (1), MYSM1 (1)</td>
</tr>
<tr>
<td>Familial thrombocytopenia and MDS</td>
<td>8</td>
<td>ANKRD26 (5), ETV6 (2), RUNX1 (1)</td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>
IBMFS diagnosed by BMF/MDS NGS panel (N=19)

<table>
<thead>
<tr>
<th>Disease</th>
<th>No of patients</th>
<th>Gene mutated (No of pts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA</td>
<td>7</td>
<td>FANCA (4), FANCE (1), FANCB (1), FANCS (1)</td>
</tr>
<tr>
<td>DBA</td>
<td>5</td>
<td>RPL15 (1), RPS10 (1), RPS7 (1), RPS26 (1), ADA2 (1)</td>
</tr>
<tr>
<td>SCN</td>
<td>2</td>
<td>CSFR3 (1), JAGN1 (1)</td>
</tr>
<tr>
<td>DC</td>
<td>5</td>
<td>TERC (1), TERT (2), TIN2 (1), WRAP 53 (1)</td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>
Congenital thrombocytopenia Non-IBMFS/MDS (N=9)

<table>
<thead>
<tr>
<th>Disease</th>
<th>Gene mutated (No of pts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MYH9 related platelet disorder</td>
<td>MYH9 (4)</td>
</tr>
<tr>
<td>Bernard-Soulier syndrome</td>
<td>GP1BA (1)</td>
</tr>
<tr>
<td>Congenital macrothrombocytopenia</td>
<td>ACTN1 (2)</td>
</tr>
<tr>
<td>Gray PLT Sy</td>
<td>NBEAL2 (1)</td>
</tr>
<tr>
<td>Glanzmann thrombasthenia</td>
<td>ITGB3 (1)</td>
</tr>
</tbody>
</table>
Summary and conclusions

- Predisposition to MDS/AML is either primary or secondary to 'classical 'inherited BMF syndromes

- Most often clinical presentation is characterized by cytopenia and accurate clinical diagnosis is impossible

- Molecular diagnosis is essential

- Number of possible causative mutated genes is constantly increasing and usually requires NGS multi-gene analysis
Summary and conclusions (cont’d)

- Using combination of Sanger sequencing and BMF/MDS NGS panel we identified the cause of cytopenia in 59 (43%) of 134 patients
- 49 (36.5%) patients had inherited predisposition to MDS/AML
- 37 (27.6%) patients diagnosed achieved only by use of BMF/MDS NGS panel
- In our experience the custom made germline IBMF/MDS NGS panel is an effective tool for diagnosis and proper management of patients with inherited MDS/AML
November 2019

New clinic: consultation for patients (children & adult) with inherited bone marrow failure syndromes

Pediatric Hematology Oncology Division

Clinic secretary: Sara Hazek

Tel: 03-9253776
e-mail: onc_sara@clalit.org.il